Production Capacity Evaluation of Farmland Using Long Time Series of Remote Sensing Images

نویسندگان

چکیده

Farmland is a crucial resource for the survival and evolution of humans. The accurate evaluation farmland production capacity (FPC) great significance planting structure optimization, improvement low-yield sustainable utilization. objective this study to quantitatively evaluate FPC at county scale using time series remote sensing (RS) images. Taking winter wheat as benchmark crop, relations between annual yield Normalized Difference Vegetation Index (NDVI) were established by multiple linear regression algorithm. mean standard deviations (SD) multi-year used its instability parcels basic unit. results show that estimation model performed best in 2011. R2 modeling sample was 0.93, RMSE testing 368.1 kg/ha. grades south north area relatively high with good stability, while those center low poor stability. There certain correlation soil organic matter (SOM), coefficient 0.525 (p < 0.01). In study, taking parcel unit instead pixel, long multi-source RS images medium resolution monitor per crops then FPC. This can provide method rapid scale.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Farmland Parcels Extraction Based on High Resolution Remote Sensing Images

Extracting farmland parcels from high resolution remote sensing images is an important issue for land-use dynamic monitoring, precision agriculture and other fields. However, the traditional method, using GIS software and manual digital, has wasted a lot of human and material resources. In addition, the results are impacted by the human factors obviously. Therefore, an automatically extraction ...

متن کامل

Assessing the Trend of Spatio-temporal Drought Changes Using Remote Sensing Time Series Data in Central Khuzestan Province

Introduction: As a dreadful natural disaster caused by a severe reduction in precipitation rate, drought brings about, compared with other natural disasters, far-reaching spatial and temporal consequences, incurring severe damages. On the other hand, in late the 20th century, drought monitoring approaches underwent a paradigm shift, and advances in remote sensing and earth observation technolog...

متن کامل

A shape-based approach to change detection of lakes using time series remote sensing images

Shape analysis has not been considered in remote sensing as extensively as in other pattern recognition applications. However, shapes such as those of geometric patterns in agriculture and irregular boundaries of lakes can be extracted from the remotely sensed imagery even at relatively coarse spatial resolutions. This paper presents a procedure for efficiently retrieving and representing shape...

متن کامل

hazard evaluation of gas condensate stabilization and dehydration unit of parsian gas refinery using hazop procedures

شناسایی مخاطرات در واحد 400 پالایشگاه گاز پارسیان. در این پروزه با بکارگیری از تکنیک hazop به شناسا یی مخاطرات ، انحرافات ممکن و در صورت لزوم ارایه راهکارهای مناسب جهت افزایش ایمنی فرا یند پرداخته میگردد. شرایط عملیاتی مخاطره آمیز نظیر فشار و دمای بالا و وجود ترکیبات مختلف سمی و قابل انفجار در واحدهای پالایش گاز، ضرورت توجه به موارد ایمنی در این چنین واحدهایی را مشخص می سازد. مطالعه hazop یک ر...

Urban Wetland Change Detection Using Time-Series Remote Sensing Data

Wetland, as one of the weakest ecosystems in the world, is deteriorating rapidly in many regions. Longfeng wetland is the biggest urban wetland in China, located in the inner of Daqing city, Heilongjiang Province. It is divided into two areas by Wolong road, the east is provincial natural reserve and the west is unprotected. This paper describes a remote sensing change detection approach used t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Agriculture

سال: 2022

ISSN: ['2077-0472']

DOI: https://doi.org/10.3390/agriculture12101619